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a b s t r a c t

This paper proposes a new greedy algorithm combining the semi-supervised learning and the sparse
representation with the data-dependent hypothesis spaces. The proposed greedy algorithm is able to
use a small portion of the labeled and unlabeled data to represent the target function, and to efficiently
reduce the computational burden of the semi-supervised learning. We establish the estimation of the
generalization error based on the empirical covering numbers. A detailed analysis shows that the error has
O(n−1) decay. Our theoretical result illustrates that the unlabeled data is useful to improve the learning
performance under mild conditions.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The semi-supervised learning, i.e., learning from a set of
the labeled and unlabeled data, has attracted many researchers
recently due to its main challenge in how to improve its prediction
performance using a few labeled data with a large set of unlabeled
data. In literature, algorithms of the semi-supervised learning have
been proposed in different perspectives. Examples include the
graph-based learning (Belkin & Niyogi, 2004; Belkin, Niyogi, &
Sindhwani, 2006; Chen, Li, & Peng, 2009; Johnson & Zhang, 2007,
2008), co-training (Blum & Mitchell, 1998; Sindhwani, Niyogi, &
Belkin, 2005; Sindhwani & Rosenberg, 2008) and many others.
A review study of the semi-supervised learning is discussed in
Chapelle, Schölkopf, and Zien (2006) and Zhu (2005).

Among thesemethods proposed for semi-supervised learning, a
family of them can be unified in a Tikhonov regularization scheme
in a reproducing kernel Hilbert space (RKHS) HK with a Mercer
kernel K , e.g., Belkin andNiyogi (2004), Sindhwani et al. (2005) and
Sindhwani and Rosenberg (2008). For the labeled data {(xi, yi)}ni=1
and the unlabeled data {xi}n+m

i=n+1, the solution of the regularization
framework usually has the following expression
m+n
i=1

αiK(xi, ·), αi ∈ R.
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The semi-supervised algorithms intend to search the coeffi-
cients {αi} for promising prediction performance. Although they
are excellent in the empirical evaluation (Belkin & Niyogi, 2004;
Sindhwani et al., 2005; Sindhwani & Rosenberg, 2008), two issues
remain to be further addressed in theory:

• Computation difficulty. Because the regularized framework
generally uses the kernel expansions of all the labeled and
unlabeled data, computation becomes a serious problem for a
huge set of the unlabeled data in real applications.

• Manifold assumption. In many graph-based methods such
as Belkin and Niyogi (2004), Sindhwani et al. (2005) and
Sindhwani and Rosenberg (2008), it is assumed that the high-
dimensional data is relied on a low-dimensional manifold.
However, for different types of data, the convincing evidences of
themanifold structure are not available (Fan, Gu, Qiao, & Zhang,
2011).

To address the above issues, previous discussions have done
to realize sparse semi-supervised learning in Fan et al. (2011),
Sun and Shawe Taylor (2010) and Tsang and Kwok (2007) but
the limitation is that they just use unlabeled data to construct an
additional sparse regularization term.

In this paper, we investigate the sparse representation of
the semi-supervised learning without manifold assumption, and
consider the sparsity of the semi-supervised learning in data
dependent hypothesis spaces. Inspired by the greedy algorithms in
Barron, Cohen, Dahmen, and DeVore (2008), Nair, Choudhury, and
Keane (2007) and Zhang (2002, 2009), we propose a new sparse
greedy algorithm for the semi-supervised learning. Theoretical
analysis shows that the proposed algorithm is efficient to realize
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the sparse learning. Several contributions of this work have been
highlighted below:

• Our method integrates three different machine learning
methods in a coherent way: the sparse semi-supervised
learning (Fan et al., 2011; Sun & Shawe Taylor, 2010; Tsang
& Kwok, 2007), the greedy algorithm (Nair et al., 2007;
Zhang, 2002, 2009), and the error analysis in data dependent
hypothesis spaces (Shi, Feng, & Zhou, 2011; Sun & Wu, 2011;
Wu& Zhou, 2008; Xiao & Zhou, 2010).We also show how to use
them to design and analyze a new semi-supervised algorithm.

• Generalization error bounds are derived for nonsymmetric and
indefinite kernels. Theoretical results show the relative values
of the labeled data and unlabeled data to achieve fast learning
rates. In particular, we illustrate that the role of the unlabeled
data is twofold. The first one is that the semi-supervisedmethod
can achieve fast learning rates using the additionally unlabeled
data. The second one is that the learning rates essentially
depend on the number of the labeled data even if the number of
unlabeled data tends to infinity. Furthermore, our error analysis
results rely on weaker conditions than the previous methods
which are based on density assumption ormanifold assumption
in Belkin et al. (2006), Belkin and Niyogi (2004), Chen and Li
(2009), Chen et al. (2009), Chen, Li, and Peng (2010), Johnson
and Zhang (2007, 2008) and Rigollet (2007).

• Even for the supervised learning settings, we can achieve faster
learning rates than the previous results in Xiao and Zhou (2010),
Shi et al. (2011) and Sun and Wu (2011). In particular, our
analysis does not require the interior cone condition presented
in Shi et al. (2011) and Xiao and Zhou (2010).

The organization of this paper is as follows. Section 2 provides
the necessary background of the semi-supervised learning and
then presents the sparse semi-supervised greedy algorithm.
Section 3 includes the main result on error analysis and its proof
is given in Section 4. An empirical study is given in Section 5. We
conclude the paper in Section 6.

2. The sparse semi-supervised greedy algorithm

Let the input space X ⊂ Rd be a compact subset and Y =

[−M,M]. In the semi-supervisedmodel, a learner obtains a labeled
data set z = {(xi, yi)}ni=1 and an unlabeled data set x = {xn+j}

m
j=1.

Here, the labeled examples (xi, yi) ∈ Z := X × Y, 1 6 i 6 n,
are independent copies of the random element (x, y) having dis-
tribution ρ on Z. The unlabeled data xn+j, 1 6 j 6 m, are inde-
pendent copies of X, whose distribution (the margin distribution
of ρ) is denoted by ρX. The learning goal is to pick up a function
f : X → Y to minimize the expected error

E(f ) =


Z

(f (x) − y)2dρ.

The function that minimizes the error is called the regression
function. It is given by

fρ(x) =


Y

ydρ(y|x), x ∈ X,

where ρ(·|x) is the conditional probabilitymeasure at x induced by
ρ.

For the given training data z, we define the empirical norm

∥f ∥2
n =

1
n

n
i=1

|f (xi)|2.

Note that ∥·∥n is the L2ρX
normwith respect to the discretemeasure

vz :=
1
n

n
i=1 δxi , where δu is the Dirac measure at u.
Denote the empirical error as

Ez(f ) := ∥f − y∥2
n =

1
n

n
i=1

(f (xi) − yi)2.

We usually call a symmetric and positive semi-definite
continuous functionK : X×X → R aMercer kernel. TheRKHSHK
is defined to be the closure of the linear span of a set of functions
{Kx := K(x, ·) : x ∈ X} with the inner product ⟨ · ⟩K given by
⟨Kx, Kx′⟩K = K(x, x′). Using the form of themanifold regularization
in the RKHS, a semi-supervised algorithm was proposed in Belkin
and Niyogi (2004):

fz,x = arg min
f∈HK


Ez(f ) + λ1∥f ∥2

K

+ λ2

m+n
i,j=1

Wij(f (xi) − f (xj))2


, (2.1)

where λ1, λ2 > 0, are the regularization parameters andWij is the
similarity weight related to xi and xj.

The empirical evaluation in Belkin andNiyogi (2004) has shown
the excellent performance of the semi-supervised algorithm in
(2.1). However, the solution fz,x =

m+n
i=1 αiKxi generally includes

kernel expansions of all the labeled and unlabeled data. As
mentioned in Tsang and Kwok (2007), this method may result in
computation difficulty for a large set of the unlabeled data.

In this paper, we use a greedy algorithm to realize the
sparse semi-supervised learning. Denote the hypothesis space
(depending on z and x) as

Hz,x =


m+n
i=1

αiKxi : αi ∈ R


.

The ℓ1 norm is defined as

∥f ∥ℓ1 = inf


m+n
i=1

|αi| : f =

m+n
i=1

αiKxi ∈ Hz,x


. (2.2)

Different from the previous hypothesis spaces which are based
on theMercer kernel,we only require the kernelK : X×X → R to
be a continuous function. This means that K here is not necessarily
symmetric or positive semi-definite. Awider selection of the kernel
offers more flexibility. Explicit examples of this general kernel can
be found in Shi et al. (2011) and Xiao and Zhou (2010).

The definition of fρ tells us |fρ(x)| 6 M , so it is natural to restrict
the approximation functions to [−M,M]. The projection operator
has been used in error analysis of learning algorithms (for example,
Barron et al., 2008, Chen, Wu, Ying, & Zhou, 2004 and Cucker &
Zhou, 2007).

Definition 1. The projection operator π = πM is defined on the
space of the measurable functions f : X → R as

π(f )(x) =

M, if f (x) > M;

−M, if f (x) < −M;

f (x), otherwise.

Since (π(f )(x) − y)2 6 (f (x) − y)2, we know E(π(f )) 6 E(f )
and Ez(π(f )) 6 Ez(f ). Therefore, using π(f ) to estimate fρ is
more accurate than using f . According to this, we introduce the
projection operator in our algorithm.

We now present the sparse semi-supervised greedy algorithm
in Table 2.1.

The algorithm can be divided into two parts. Selecting features
φk and solving the empirical risk minimization to derive f̂k.
The normalization of kernels makes error analysis feasible while
maintaining the prediction performance of the algorithm. The
stopping condition ∥y − f̂k∥2

n + ∥f̂k∥ℓ1 6 ∥y∥2
n is inspired from the

initial function f̂0 = 0.
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Table 2.1
Semi-supervised greedy algorithm.

Input: z ∈ Zn, x ∈ Xm, K , and T > 0
Step 1. Normalization: K̂xi = Kxi/∥Kxi∥m+n, i = 1, . . . ,m + n
Dictionary: Dm+n = {K̂xi : i = 1, . . . ,m + n}

Step 2. Computation: Let f̂0 = 0
fork = 1, 2, . . .

let φk = argming∈Dm+n |⟨y − f̂k−1, g⟩n|
let Ĥk = Span(φ1, . . . , φk)

f̂k = argminh∈Ĥk
∥y − h∥2

n

if∥y − f̂k∥2
n + ∥f̂k∥ℓ1 ≤ ∥y∥2

n and k > Tbreak
end

Output: π(f̂k)

3. Main result

Nowwe introduce a data-free function space similar to Shi et al.
(2011) and Xiao and Zhou (2010).

Definition 2. Define a data-free assumption function space

H1 =


f : f =

∞
j=1

αjK̃uj , {αj} ∈ ℓ1, {uj} ⊂ X,

K̃uj = Kuj/∥Kuj∥L2ρX


with the norm

∥f ∥H1 = inf


∞
j=1

|αj| : f =

∞
j=1

αjK̃uj


.

In order to investigate the approximation of π(f̂k) to fρ , we
introduce a regularizing function
fλ = arg min

f∈H1
{E(f ) + λ∥f ∥H1},

where λ > 0 is a regularization parameter.
The regularizing error can be expressed as

D(λ) = inf
f∈H1

{E(f ) − E(fρ) + λ∥f ∥H1}.

The decay ofD(λ) asλ → 0measures the approximation ability
of the function space H1 to fρ . It is easy to see that

E(π(f̂k)) − E(fρ) 6

E(π(f̂k)) − Ez(π(f̂k)) + Ez(fλ) − E(fλ)


+


Ez(π(f̂k)) − Ez(fλ)


+


E(fλ) − E(fρ)


.

In learning theory, three terms in the right part of the above
inequality are called the sample, hypothesis, and approximation
errors, respectively.

The following two conditions have been widely used for error
analysis in extensive literature, e.g., Cucker and Zhou (2007), Shi
et al. (2011), Wu and Zhou (2008), Xiao and Zhou (2010) and
Zou, Li, and Xu (2009). They are also the necessary conditions for
establishing our approximation analysis.

Definition 3. We say that the target function fρ can be approxi-
mated with exponent 0 < q 6 1 in H1 if there exists a constant
cq > 1, such that

D(λ) 6 cqλq, ∀λ > 0.

Definition 4. We say that the kernel function K is a C s kernel with
s > 0 if there exists some constant cs > 0, such that

|K(t, x) − K(t, x′)| 6 cs|x − x′
|
s, ∀t, x, x′

∈ X.

We now formulate the generalization error bounds for the
semi-supervised algorithm defined in Table 2.1.
Theorem 1. Assume that fρ can be approximated with exponent 0 <
q 6 1 in H1 and K is a C s kernel with 0 < k0 6 K(u, v) 6 k1 for any
u, v ∈ X. Choose T > n. Then, for any 0 < δ < 1, with confidence
1 − δ

E(π(f̂k)) − E(fρ) 6 c̃ log(1/δ)n−min


2
2+p ,

q
2−q


,

where constant c̃ is independent of m, k, δ, and

p =

2d/(d + 2s), if 0 < s 6 1;
2d/(d + 2), if 1 < s 6 1 + d/2;
d/s, if s > 1 + d/2.

When q → 1, s → ∞, we can derive the learning rate of
O(n−1). The convergence rate is faster than the sparse semi-
supervised method in Sun and Shawe Taylor (2010) with the order
of O(n−

1
2 ). Although the convergence rates of the exponential or-

der are presented for the semi-supervised algorithms in Chen and
Li (2009) and Rigollet (2007), these results depend on the mixture
density assumption or the strong cluster assumption.

Meanwhile, our convergence rate is faster than the supervised
coefficient regularization methods, e.g., O(n−

1
5 ) in Sun and Wu

(2011),O(n−
1
3 ) in Xiao and Zhou (2010),O(n−

1
2 ) in Shi et al. (2011).

Although an additional lower bound of the kernel K is required in
current analysis, we do not need the restricted conditions ofX and
ρ presented in Shi et al. (2011) and Xiao and Zhou (2010).

Our result also illustrates that the role of unlabeled data is
twofold in theory: (1) the unlabeled data is useful to improve the
learning performance of the greedy algorithm; and (2) its affect
is limited by the present analysis framework because the sample
error essentially depends on the number of the labeled data.

4. Error analysis

In this section, we provide the proof of Theorem 1 based on
the upper bound analysis of the sample and hypothesis errors.
The sample error is bounded by the error analysis method and
empirical covering numbers. The hypothesis error is established in
terms of theoretical analysis of the greedy algorithm presented in
Barron et al. (2008).

4.1. Estimate of sample error

We first establish the estimation of the sample error using
the standard analysis techniques presented in Cucker and Smale
(2002), Cucker and Zhou (2007) and Shi et al. (2011). For
completeness, we include them here with some proofs.

Denote
S1 = {Ez(fλ) − Ez(fρ)} − {E(fλ) − E(fρ)}

and
S2 = {E(π(f̂k)) − E(fρ)} − {Ez(π(f̂k)) − Ez(fρ)}.

We can observe that the sample error

E(π(f̂k)) − Ez(π(f̂k)) + Ez(fλ) − E(fλ) = S1 + S2.
The bound of S1 has been proved in Shi et al. (2011) using the

one-side Bernstein inequality and the fact ∥fλ∥H1 6 D(λ)/λ.

Proposition 1. For any δ > 0, with confidence at least 1 − δ, we
have

S1 6
7(3M + k1k−1

0 D(λ)/λ)

3n
log(1/δ) +

1
2
D(λ).

Lemma 1. Under the conditions of Theorem 1, for almost every z ∈

Zm and x ∈ Xn, we have

∥f̂k∥H1 6 k1M2.
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Proof. From the definition of the ℓ1 norm in (2.2) and Definition 2,
we know that

∥f̂k∥H1 6 k1∥f̂k∥ℓ1 .

Based on the algorithm in Table 2.1, we observe that

∥f̂k∥ℓ1 6 ∥y∥2
n 6 M2.

Combining above two inequalities, we derive the desired result.
�

In order to obtain the uniform upper bound of S2, we consider
the data-dependent space

Br = {f ∈ H1 : ∥f ∥H1 6 r},

where r = k1M2.
Recently, a nice result has been established in Shi et al. (2011) to

estimate the capacity of B1. Now recall some basic notations and
definitions.

Definition 5. Let (U, d) be a pseudo-metric space and S ⊂ U
denote a subset. For every ϵ > 0, the covering number N (S, ϵ, d)
of S with respect to ϵ, d is defined as the minimal number of balls
of radius ϵ whose union covers S, that is,

N (S, ϵ, d) = min


l ∈ N : S ⊂

l
j=1

B(sj, ϵ)

for some {sj}lj=1 ⊂ U


,

where B(sj, ϵ) = {s ∈ U : d(s, sj) 6 ϵ} is a ball in U.

The empirical covering number with the ℓ2 metric is defined
below.

Definition 6. Let F be a set of functions on X, u = (xi)ki=1 and
F |u = {(f (ui))

k
i=1 : f ∈ F } ⊂ Rk. Set N2,u(F , ϵ) = N2,u(F |u,

ϵ, d2). The ℓ2 empirical covering number of F is defined by

N2(F , ϵ) = sup
k∈N

sup
u∈Xk

N2,u(F , ϵ), ϵ > 0,

where the ℓ2 metric

d2(a, b) =


1
k

k
i=1

|ai − bi|2
 1

2

, ∀a = (ai)ki=1 ∈ Rk,

b = (bi)ki=1 ∈ Rk.

Now we introduce an important concentration inequality,
which can be found in Wu, Ying, and Zhou (2007).

Lemma 2. Assume that there are constants B, c > 0 and α ∈ [0, 1]
such that ∥f ∥∞ 6 B and Ef 6 c(Ef )α for every f ∈ F . For some
a > 0 and p ∈ (0, 2), if

log(N2(F , ϵ)) 6 aϵ−p, ∀ϵ > 0,

then there exists a constant c ′
p depending only on p such that for any

t > 0, with probability at least 1 − e−t , there holds

Ef −
1
m

n
i=1

f (zi) 6
1
2
η1−α(Ef )α + c ′

pη + 2

ct
n

 1
2−α

+
18Bt
n

, ∀f ∈ F ,

where

η := max


c

2−p
4−2α+pα

 a
n

 2
4−2α+pα

, B
2−p
2+p

 a
n

 2
2+p


.

Proposition 2. If K is a C s kernel, then for any 0 < δ < 1, with
confidence at least 1 − δ,

S2 6
1
2
{E(π(f̂k)) − E(fρ)} + c1 log(1/δ)n

−
2

2+p ,

where c1 = 640M2(cp,K (4Mr)p)
2

2+p , r = k1M2, and cp,K is a constant
depending only on X, p, K.

Proof. Denote

Fr = {g(z) = (y − π(f )(x))2 − (y − fρ(x))2 : f ∈ Br}.

We can see that Eg = E(π(f )) − E(fρ) and 1
n

n
i=1 g(zi) =

Ez(π(f )) − Ez(fρ). Since ∥π(f )∥∞ 6 M and |fρ(x)| 6 M , we have

|g(z)| =
π(f )(x) − fρ(x)

 
(π(f )(x) − y) + (fρ(x) − y)


6 8M2

and

Eg2
=


Z

(π(f )(x) − fρ(x))2((π(f )(x) − y)

+ (fρ(x) − y))2dρ 6 16M2Eg.

For g1, g2 ∈ Fr , we have

|g1(z) − g2(z)| = |(y − π(f1)(x))2 − (y − π(f2)(x))2|
6 4M|π(f1)(x) − π(f2)(x)|
6 4M|f1(x) − f2(x)|.

Then

N2,z(Fr , ϵ) 6 N2,x


Br ,

ϵ

4M


6 N2,x


B1,

ϵ

4Mr


.

In connection with Definition 6 and Theorem 2 in Shi et al.
(2011), this implies

logN2


B1,

ϵ

4Mr


6 cp,K (4Mr)pϵ−p, ∀ϵ > 0,

where cp,K is a constant independent of ϵ.
Applying Lemma 2with B = c = 16M2 and a = cp,K (4Mr)p, for

any δ ∈ (0, 1) and ∀g ∈ Fr ,

Eg −
1
n

n
i=1

g(zi) 6
1
2
Eg + c ′

p(16M
2)

2−p
2+p


cp,K (4Mr)p

n

 2
2+p

+ 320M2 log(1/δ)
n

,

6
1
2
Eg + 640M2(cp,K (4Mr)p)

2
2+p

× log(1/δ)n−
2

2+p

holdswith the confidence 1−δ. Note that f̂k ∈ Br . Then {E(π(f̂k))−
E(fρ)} − {Ez(π(f̂k)) − Ez(fρ)} can be bounded by 1

2 {E(π(f̂k)) −

E(fρ)} + c1 log(1/δ)n
−

2
2+p . This completes the proof. �

4.2. Estimation of the hypothesis error

A good estimation of the hypothesis error is important to
achieve tight generalization error bounds for learning with the
data-dependent hypothesis spaces. In Shi et al. (2011) and Wu
and Zhou (2008), the hypothesis error has been well studied for
the regularized method with data-dependent hypothesis spaces.
Different from these studies, we establish the estimation of the
hypothesis error Ez(f̂k) − Ez(fλ) based on Theorem 2.3 in Barron
et al. (2008).
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Proposition 3. For any δ > 0 and k > T , the inequality

Ez(f̂k) − Ez(fλ) 6 min


k21k

−2
0 ,


1 + k1k−1

0


log(n/δ)

2n

2

×
D2(λ)

kλ2

is true with the confidence at least 1 − δ.
Proof. Denote the function space

Hn
1 =


h =


i

αn
i K̃

n
ui : αn

i = αi∥K̃ui∥n,

K̃ n
ui = K̃ui/∥K̃ui∥n,


i

αiK̃ui ∈ H1


with the norm

∥f ∥Hn
1

= inf


i

|αn
i | : f =


i

αiK̃ui


.

From Theorem 2.3 and the inequality (3.26) in Barron et al.
(2008), we know

Ez(f̂k) − Ez(fλ) 6
4∥fλ∥2

Hn
1

k
. (4.3)

Since ∥fλ∥2
Hn

1
depends on z, we must further find its relation

with ∥fλ∥2
H1

. From the definitions of ∥f ∥Hn
1
and ∥f ∥H1 , we know

that ∥f ∥Hn
1

6
k1
k0

∥f ∥H1 .
We also observe that ∥K̃ui∥

2
L2ρX

= EK̃ 2
ui = 1 and

∥K̃ui∥n − 1 =

1
n

n
j=1

|K̃(ui, xj)|2 − 1

6
1
n

n
j=1

|K̃(ui, xj)|2 − 1. (4.4)

Meanwhile, based on the Hoeffding inequality, for any i, we
have

Prob


1
n

n
j=1

|K̃(ui, xj)|2 − EK̃ 2
ui > ϵ


6 exp


−

2k20ϵ
2n

k21


. (4.5)

By setting δ = exp{− 2k20ϵ
2n

k21
}, from (4.4) and (4.5), we have with

the confidence 1 − δ,

∥K̃ui∥n 6
1
n

n
j=1

|K̃(ui, xj)|2 6 EK̃ui + k1k−1
0


log(1/δ)

2n

6 1 + k1k−1
0


log(1/δ)

2n
.

Hence,

∥fλ∥2
Hn

1
6

1 + k1k−1

0


log(1/δ)

2n

2
∥fλ∥2

H1

is true with the confidence at least 1 − nδ.
Finally, combining the above inequality with (4.3) and ∥fλ∥H1 6

D(λ)/λ, we derive the desired result. �

4.3. Estimate of learning rates

Based on the above estimations of the sample and hypothesis
errors, we derive the estimation of the learning rates.
Proof of Theorem 1. Combining the results in Propositions 1–3,
we have that

E(π(f̂k)) − E(fρ) 6
14(3M + k1D(λ)/λ)

3n
log(1/δ)

+ 3D(λ) + 2c1 log(1/δ)n
−

2
2+p

+ 2min


k1k−1

0 ,


1 + k1k−1

0


log(n/δ)

2n

2

×
D2(λ)

kλ2

with the confidence at least 1−3δ. From the condition of D(λ), we
have with confidence 1 − δ

E(π(f̂k)) − E(fρ) 6 c log(1/δ)


λ2q−2

n
+ n−

2
2+p + λq

+
λ2q−2

k


,

where c is a constant independent of n, δ, k. Note that k > T > n.
Then, setting λ = n

1
q−2 , we derive

E(π(f̂k)) − E(fρ) 6 c̃ log(1/δ)n−min


2
2+p ,

q
2−q


with the confidence 1 − δ. This finishes the proof. �

5. An empirical study

Our theoretical analysis of the semi-supervised greedy algo-
rithm (SSG) shows that it is efficient to achieve fast learning rates
for the regression learning. In this section, we compare ourmethod
with the least square regularized regression (LSR) algorithm in
RKHS.

The least square regularized regression algorithm has been
extensively studied in learning theory (Cucker & Zhou, 2007) and
can be formulated as

fz = arg min
f∈HK


Ez(f ) + λ∥f ∥2

K


.

We consider X = [0, 1], the Gaussian kernel K(x, t) = exp
(− (x−t)2

2µ2 ) with µ = 1, and λ = 10−3. We choose fρ(x) = sin(πx)
and fρ(x) = x2 as the target functions respectively. The labeled
samples (xi, yi) are generated as follows: xi is independently and
uniformly distributed within [0, 1] and

yi = fρ(xi) + ϵi, ϵi ∼ N(0, σ 2
ϵ ).

Three different noise levels are considered: σϵ = 0.01, 0.05,
0.25. The unlabeled samples x = {x̃j}1000j=1 are also independently
and uniformly distributed within [0, 1]. The mean square error
(MSE) of f on x is defined as below

MSE =
1

1000

1000
j=1

(f (x̃j) − fρ(x̃j))2,

which is used to measure the efficiency of learning algorithms.
We report the mean value of the MSE results of the 100

repeating tests for each case. The results are summarized in
Figs. 5.1 and 5.2.

The results show that the prediction performance depends on
not only the smoothness of the target function but also the noise
level, and that the SSGmight be better for the small noise situation.
This preliminary study shows that our method is efficient for
regression.

Finally, we remark that the upper bound analysis and prelim-
inary empirical analysis are not enough for a comprehensive the-
oretical understanding of the proposed method. The lower bound
analysis is also important to evaluate its learning performance. For
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Fig. 5.1. Empirical comparison of g(x) = sin(πx) and σϵ = 0.01, 0.05, 0.25.
Fig. 5.2. Empirical comparison of g(x) = x2 and σϵ = 0.01, 0.05, 0.25.
the semi-supervised learning, it is crucial to utilize the unlabeled
data to find the characteristics of the target function under a cer-
tain assumption of the distribution. They are out of the scope of
this paper and we leave it for our future study.

6. Conclusion and discussion

This paper has introduced a sparse semi-supervised method to
learn the regression functions from samples using the orthogonal
greedy algorithm. Fast learning rates were derived under mild
assumptions. The symmetric or positive semi-definite demand for
kernel and the interior cone condition for X (see Shi et al., 2011) is
abandoned in this paper. There are some extensions to thismethod
which we discuss as below:

1. The semi-supervised learning based on other greedy algo-
rithms: The proposed method depends on the orthogonal
greedy algorithm. It remains open to explore the semi-
supervised learningwith other greedy algorithms, e.g., the pure,
relaxed, or stepwise greedy algorithm. Some ideas are pre-
sented in Barron et al. (2008) and Zhang (2002) for the super-
vised settings.

2. Sample error estimationwith different techniques: Our analysis
shows that the work for the unlabeled data is limited.
Under current analysis techniques, the sample error cannot
be improved even if the number of the unlabeled data tends
to infinity. For this reason, it would be important to explore
a new technique to analyze the sample error under suitable
assumptions.
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